

Brazing Troubleshooting

Introduction

Silver brazing allow is probably the most versatile of all the metal-joining processes available. An extensive range of similar and dissimilar parent metals can be joined permanently, provided the fundamental requirements of the processes are observed. However, even when engineers are convinced that they have followed the basic principles for successful silver brazing, there are still cases where they meet difficulty in the execution of the joint, or find that the joints do not, for some seemingly inexplicable reason, perform as they should.

The recommended action is to contact the technical team at Thessco Limited to see if we can offer assistance. The first questions we will ask are:

- 1. Are the parent metals clean (oxide and oil/grease free)?
- 2. Are you using the correct brazing alloy for the components being joined and their subsequent application?
- 3. Are the correct flux for the brazing alloy and brazing process being used?
- 4. Is the correct heat pattern on the parts to be joined being used?

Typical defects – causes and remedies

Defect	Possible cause	Remedy
Brazing alloy	a) Gross surface contamination	a) Examine cleaning procedures
fails to wet	b) Ineffective fluxing action	b) Check grade – increase amount
either joint		used
surface.	c) Refractory oxide formation	c) Seek expert advice

Brazing alloy	a) Gross surface contamination	a) Check cleaning procedure		
fails to wet	b) Refractory oxide formation	b) Seek expert advice		
one joint	c) Unsatisfactory heat pattern	c) Apply heat to heavier component.		
surface	d) Badly fitting preform	d) Use spring fit to bridge joint gap		
surface		d) use spring in to bridge joint gap		
Failure of	a) Badly fitting components	a) Check consistency of joint		
		clearances.		
brazing				
alloy to flow	b) Uneven heating	b) Raise whole joint to temperature		
smoothly		simultaneously.		
(joint is	c) Poor joint ventilation	c) Ensure gases have adequate		
rough and		escape route.		
fillet uneven)	d) Ineffective fluxing	d) Check grade – increase amount		
		used.		
	e) Overheating	e) Adjust temperature close to		
		liquidus.		
	f) Liquidation (liquid/solid) separation	f) Increase heating rate or use		
		narrow melting range alloy.		
1. VOIDS Porosity in joints: (obvious gaps)				
	a) Excessive variable clearances.	a) Tighten or adjust tolerances		
	b) Insufficient or uneven heating	b) Adjust heat pattern or time cycle		
	c) Poor joint ventilation	c) Provide vents for escape of gas		
2. BLOW	 HOLES (rounded shiny interiors)			
Z. BLOW				
	a) Hydrogen pick-up molten alloy	a) Adjust flame to neutral/slightly		
		oxidising		
	b) Flux entrapment	b) Check clearances and heat		
		pattern		
3. SHRIN	KAGE (usually in centre of fillet)			
	a) Excessive local tolerance	a) Modify dimensions		
	-	b) Balance up heat pattern		
	b) Localised overheating			
	c) General overheating	c) Reduce time cycle		
	d) Excessive freezing range alloy	d) Use short range grade.		
Cracking in he	dy of brazing allow (usually pear contro			
	dy of brazing alloy (usually near centre c			
	a) Thermal stresses on cooling	a) Ensure that highest thermal		
		expansion material is on outside of		
		joint		
	b) Contamination of brazing alloy	b) Seek expert advice		
Failure at ioint	I t surface (usually close to one parent me	ı tal)		
	a) Contamination of surface	a) Examine cleaning procedures		
	-	a chamme cleaning procedures		
	concerned			
	b) Formation of brittle layers	b) Seek expert advice		
	c) Interfacial corrosion (stainless steel	c) Seek expert advice		
	only)			
	*			

